shape of the dose-effect curve, and the lack of interaction with theophylline.

References

ENERO, M.M. & SAÏDMAN, B.O. (1977). Possible feedback inhibition of noradrenaline release by purine compounds. Naunyn-Schmiedeberg's. Arch. Pharmac., 297, 39-46. VERHAEGHE, R.H., VANHOUTTE, P.M. & SHEPHERD, J.T. (1976). Inhibition of sympathetic neurotransmission in canine blood vessels by adenosine and adenine nucleotides. Circulation Res., 40, 208-215.

WORCEL, M. (1978). Relationship between the direct inhibitory effects of hydralazine and propildazine on arterial smooth muscle contractility and sympathetic innervation. J. Pharmac. exp. Ther., 207, 320-330.

Oxymetazoline-sensitive and -insensitive presynaptic α-adrenoreceptors in isolated rat atria

E.T. ABBS & C.F. DUTTA

Pharmacology Laboratories, School of Pharmacy, Portsmouth Polytechnic, St. Michael's Building, White Swan Road, Portsmouth, PO1 2DT

Presynaptic α -adrenoreceptors have been found in many sympathetically-innervated tissues and their stimulation by released noradrenaline (NA) appears to play an important role in the regulation of the release of the neurotransmitter (Langer, 1977). However, α -adrenoreceptor agonists do not invariably decrease transmitter overflow in response to adrenergic nerve stimulation; see for example, McCullough, Rand & Story (1972).

Recent experiments in our laboratories suggest that there may be two populations of presynaptic α -adrenoreceptors in adrenergic nerves in rat atria; one being sensitive and the other being insensitive to oxymetazoline.

Isolated atria from adult male Wistar rats were superfused with McEwen's solution aerated with 95% O₂, 5% CO₂ at 37°C. Adrenergic nerves were stimulated, at supramaximal voltage using a pulse width of 0.5 ms for 15 s every 5 min at frequencies of 2-8 pulses/s, by placing two electrodes 3 mm apart in contact with the right atrium in the region of the sinuatrial node (Abbs & Elworthy, unpublished).

P values for frequency response curves were calculated using regression analysis.

Analysis of responses to adrenergic nerve stimulation indicated that atria could be divided into two groups (A & B). Increases in atrial rate and tritium overflow (in atria preincubated with [³H]-NA) were greater at all stimulation frequencies in group A than

in group B (P < 0.001, n = 44, d.f. = 168, atrial rate; mean tritium overflow (d min⁻¹ pulse⁻¹) \pm s.e. mean at 4 pulses/s group A = 39.5 \pm 10.6, n = 4; group B = 16.3 \pm 3.2, n = 8. P < 0.05). Atrial responses to NA were similar in both groups. Of 56 atria tested 28 were in group A and 28 in group B.

Oxymetazoline $(10^{-10}-10^{-8} \text{ M})$ reduced atrial responses at all frequencies of adrenergic nerve stimulation in group A $(P < 0.001, n = 33, \text{ d.f.} = 124, 10^{-10} \text{ m})$. These atria were relatively insensitive to piperoxane $(10^{-8} \text{ and } 10^{-7} \text{ m})$; a significant increase in atrial responses to adrenergic nerve stimulation being observed only at 10^{-7} m (P < 0.05, n = 10, d.f. = 32).

Group B atria were insensitive to oxymetazoline, in the above doses, but piperoxane $(10^{-8} \text{ and } 10^{-7} \text{ m})$ increased atrial responses at all frequencies of adrenergic nerve stimulation $(P < 0.001, n = 13, \text{d.f.} = 44, 10^{-8} \text{ m})$.

Atrial responses to NA were not affected by oxymetazoline or piperoxane in either group.

It is suggested that the presynaptic α -adrenoreceptors in group B atria may be subjected to maximal feedback inhibition from released endogenous NA and are thus unresponsive to oxymetazoline whereas in group A they are subjected to much less inhibition and are responsive to the drug.

References

LANGER, S.Z. (1977). Presynaptic receptors and their role in the regulation of transmitter release. Br. J. Pharmac., 60, 481–497.

McCullough, M.W., Rand, M.J. & Story, D.F. (1972). Inhibition of ³H-noradrenaline release from sympathetic nerves of guinea-pig atria by a presynaptic α-adrenoreceptor mechanism. *Br. J. Pharmac.*, 46, 523–524P.